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(Received 17 March 1966)

Abstract—The paper deals with a solution of the temperature field in cylindrical bodies consisting of

several annuli provided with external or internal longitudinal fins in the shape of annular sectors or prisms.

The problem is analysed for boundary conditions varying along the periphery, and for an arbitrary distribu-.

tion of sources over the cross section. Problems of this type are encountered in thermal-engineering com-

putations of longitudinally finned nuclear reactor fuel elements or of longitudinally finned tubes of heat

exchangers. The method evolved in the paper can also be applied to problems concerning laminar flow in
non-circular channels.

NOMENCLATURE

x,y, Cartesian coordinates [m], [m];

r,¢, polar coordinates [m], [rad];

R, radius of the interface of the two media [m];
t, temperature [°C];

Ay heat conductivity [kcal/m h °C];

o, heat-transfer coefficient [kcal/m?* h °C];

o, thermal contact resistance [m*h°C/kcal];

g, density of heat sources [kcal/m3h].

1. INTRODUCTION

ONE OF the interesting problems of heat conduction which is of considerable importance in practical
applications, is the analysis of the temperature field in cylindrical bodies with projecting longi-
tudinal fins. Probiems of this sort are met with in detailed analyses of heat conduction in finned
tubes of heat exchangers and in particular, in longitudinally finned nuclear reactor fuel elements.
Figure 1 shows two versions of a fuel element in which this type of problem occurs. The longitudinal
fins are considered to be shaped like annular sectors or like prisms. The body is considered as
composed of several simple regions and the solutions of heat-conduction equation in individual
regions is found in the form of infinite series. Then the solutions in individual regions are bound
together by means of boundary conditions on the interfaces between these regions. Thus we receive
an infinite system of linear algebraic equations for the integration constants. This system of equa-
tions was solved with the help of the method of reduction. The paper does not deal with the analysis
of the application of this method in our calculations.

The computation assumes an arbitrary distribution of heat sources across the cross section,
and boundary conditions varying along the periphery. Heat conduction in the direction of the
z-axis is neglected.

It is also assumed in our considerations that the heat conductivity of the material J, the
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F1G. 1. Some types of longitudinally finned fuel elements in which the examined
problem occurs (1—fuel; 2—can; 3—cross section for flow of cooling

medium).
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heat-transfer coefficient for the boundary condition « and the contact resistance on the interface
of the two media p are independent of temperature. However, cases including temperature depend-
ent coefficients 4, a, p can also be solved on the basis of [2].

2. SOLUTION OF HEAT-CONDUCTION EQUATION IN VARIOUS COORDINATE SYSTEMS
2.1. Solution of the heat-conduction equation in pglar coordinates
The heat-conduction equation in the form of
—A V2t = g(r) 1)
may be rewritten for polar coordinates in the form of
?t 1ot 10%  gr,)

Py M s
For the sake of simplicity it is assumed that the problem is symmetric with respect to the x-axis.
Then the solution of the equation (2) may be sought in the form of

: @

t=Y f,cosmo. (3)
i=0
First we expand the right-hand side of equation (2) in a Fourier series,
W09 _ $ gir)cosmg @
A i=0
where functions cos mg satisfy conditions (cf. Section 2.3)
0 i#]j
¢
Jcosmeg.cosmupde = (5
0 ¢ sin 2m,-¢) o
> (1 + I i=j

Multiplying successively equation (4) by functions cos m; and integrating with respect to variable
¢ in the interval of 0 € ¢ < ¢, we obtain, by using (5), the following expression for the Fourier
coefficients

¢
2 1 g(r, @)
gidr) = > N P ¢J‘ T cosmp de. 6)
2myp
In the case of g = const, we find
g sin myg

gi Q]

- A2m¢ + sin2m’

Introducing series (4) and the assumed form of solution (3) in the differential equation (2) we
obtain an equation that can be written out for various functions of variable ¢ (i.e. for cos mp).
The ordinary differential equations thus arrived at are in the form of

1 2
f‘,”+;f',’—%fi=—g,{r) (i=01,2,..). 8)
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Solution of these differential equations can be effected by means of the method of integrating
factors [1]. We obtain*

fi=Ar™ + Br™m —pm [ @mED [a ey it tde dr’ for m; #0 9)
fi=Ao + Bolnr — |1/t [ gfr")r" dr'dr for m; =0. (10

In the case where none of the values of m; equals zero, we may, on introducing in series (3), write
the solution of equation (2) in the form

M8

fr,p) = ) [As™ + Br™™ +Z{r)] cosmp; (11)

1

0

if some of the values of m; is equal to zero (let that be for i = 0), we obtain the solution in the form
of

tr,0) = Ay + Bolnr + zo(r) + Y, [Ag™ + Br™™ +Z(r)] cos mo (12)
i=1
where
Zfr)= —rm [y @mtD gy rmtide dr. (13)

Note 1. In the case of the region being circular, constants B, are equal to zero for physical reasons.
Note 2. As Section 2.3 will indicate, it is profitable to modify solution (11) by the addition of a
constant (let us denote it by ¢,). The solution thus obtained in the form of

e8]
Hr,@) = to + Y, [Ar™ + Br™™ +Z{r)] cosmy (11a)
i=0
also satisfies the differential equation (2).
2.2. Solution of the heat-conduction equation in the Cartesian coordinates

Assuming again that the problem is symmetrical with respect to the x-axis, we can write the
heat-conduction equation as

2t 0t g(xy)

= 14
x:t oy? A (19
and seak its solution in the form of
t= i f: cos m;y. (15)
i=0

Using a procedure analogous to that of the preceding section, we obtain for the solution of equation
(14) a series (assuming none of the values m; equals zero)

tx,y) =ty + 3, [A;e™* + B;e™™ +Z(x)] cos m;y (16)
i=0

* The integrals must be thought of as indefinite integrals: r, and r;, are the suitably chosen limlts.
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where
% 'x, '
Z}(x) — empc j‘e—Zmix fg‘{xu) emix dxu dx’. (1?)
Xo xb

The Fourier coefficients of function g(x, y) can be determined in a manner similar to that used in
Section 2.1. Thus

Y

2 1 X,
gix) = S Zm-Y_f gl - Y) cos m;y dy (18)
L+ 2mY °
or for g = constant
—_
gi=4d 0 (19)

A2mY + sin2m;Y’

2.3. Determining the values m,

The boundary conditions on the surface of the regions examined and at the interface of the
two media will be dealt with in detail in Section 3. In what follows we shall mention the boundary
conditions only in so far as they are required for the determination of the values of m;.

2.3.1. The examined region is circular or annular. In the case where the examined region is circular
or annular, we obtain for reasons of cyclicity of the solution (in dependence of angle ¢) the following
values of m;:

m=012.... (20)

If, however, the solution is to be repeated N-times along the periphery [see e.g. Fig. 1(a) where
N = 8], we obtain

m, = 0,N,2N,.... (1)

2.3.2. The examined region is in the form of an annular sector. Let us assume that along the radius
vector for ¢ = ¢ (cf. Fig. 2) the third boundary condition applies in the form of

o ofr) [dr, §) — o] (22

@=

where t, is the ambient temperature. Introducing form (11a) to condition (22) we obtain
APy [Ar™ + Br™™ + Z{N]m;sinmg = o(r) Y. [Ar™ + Br™™ + Z{r)] cosmp. (23)
If the boundary condition is required to be satisfied for the various harmonic components, we
obtain for the values of m; a transcendental equation in the form
m¢ tan m¢p = %r) ro.
As this equation implies, product ofr) . r must be constant, ie. the course of the heat-transfer co-
efficient along radius-vector for ¢ = ¢ must be in the form of

a(r) = const/r.
40
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FiG. 2. Sketch of fin in the shape of annular sector with third boundary
condition.

Thus we obtain the following equation for the determination of the values of m
xtany = C (24)
where

_ ofro) roch

x=mp, C 1

(25)

and r, is a suitably chosen radius.
It can be demonstrated that the pair of roots of equation (24) satisfy conditions (5). In the case
o — 0 we obtain the so called second boundary condition. Numbers y; assume the values of

t=0,m2n,...
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whence

2n
T

On the other hand, for « — oo we obtain the so called first boundary condition. The values of m;
are

n
m; = 01 1
¢

m o= 1R 3%
T2¢72¢ 7,
2.3.3. The examined region is prismatic. We assume that the third boundary condition
a(x,
-2 t(a Y) = a(x) [t(x, Y) — t,] (26)
y y=Y

now applies along the straight line y = Y. Analogously to Section 2.3.2 this implies that the values
of m; are the roots of the equation

mY tanmY = ﬁ(;_) Y.

It is, therefore, indicated that along the line y = Y we must have o(x} = const.

2.4. Resultant symbolic representation of expressions for variations of temperature t and derivative
otjor
2.4.1. Circular region. In view of Section 2.3, series (12) for the region k may be written in matrix
symbolics as follows:

tk(rs (P) = ksqu(i‘Mr lck + er) (27)
where the row matrix *S_, square matrix {M, and vectors ,C, and *Z, are respectively in the form of

S, = [cos mPe, cos mPo, cos mPe, ...}

mr: 1 > 1Ck= A(Ok}v er= ZO(r)
P A z,(r)

) AP Zy(r)

and where functions Z(r) are given by expression (13). On carrying out differentiation t,/dr we
obtain the expression

atk(ra (P)
or

where matrices ¥M, and *Z, are derivatives of matrices M, and *Z,.
2.4.2. Annular region. In the case of an annular region we obtain analogously to Section 2.4.1

0, @) = "S,GM, G + *Z,) (29)

="S,(iM; (C, +*Zy) (28)
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where the rectangular matrix M, and vector C, are respectively in the form of

™M, =1, Inr 1. ¢ =[4¥]
r"'“k), r—ml(k) Bg()
rmz(k)’ r——mz(k) A(lk)
B®
L ] [
On carrying out differentiation 0t,/dr we obtain
Ot(r, @) , .
S = SUM, G+ 'Z) (30)

where M, is the derivative of matrix XM,.
2.4.3. Annular sector. If the third boundary condition is applied along the radius vector for
¢ = ¢, the temperature distribution is given by the expression [cf. equation (11a)]:

tk(ra (P) = tO + kStp(ng Ck + er)' (31)
where

M, = [pmo® pmmo®
r bl

my 0o

- k)
P pTme

The meaning of the other matrices and vectors is identical with that of the preceding sections;
the values of m{® are determined by solving the equation (24).

From the point of view of the solution of the boundary problems, it is convenient to expand
the constant ¢, in a Fourier series with respect to functions cos m{®¢. Relation (31) can be then
rewritten in the form of

4(r.0) = 'S,(GM, C; + *Z, + 'T,) (31a)
where
T, = 4 "to_ sin mP¢ i
2mPd + sin 2mP¢

sin m{P¢p
2mP¢ + sin 2mPe

-

On carrying out differentiation dt,/dr we obtain the expression

otfr, @) , ,
"ér P~ 8 (ML C, + “Z). (32)

2.4.4. Prismatic region. In view of the expression (16) and Section 2.3.3, the relation for the distribu-
tion of temperature f,(x, y) may be written as follows:

tk(xﬂ )’) = tO + kS)'(kMx Ck + ka) (33)
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where
S, = [cos mPy, cosmPy, ...]
kMx - emo"‘)x’ e ~mot)x , L ZO(X)

X

m0x L —mg0ox
e, e M Zy(x)

and functions Z(x) are given by expression (17). A modification similar to that of Section 2.4.3
will give

tk(xa Y) = kS_v(kMx Ck + ka + kTO) (333)

where vector *T, is of the same form as in Section 2.4.3 with the only exception that angle ¢ has
been replaced by the value Y.
The derivative dt,/0x is in the form

~—-—at"gc’ Y s (M. C, + 1Z)) (34)

2.5. Matrix notation of the product of two Fourier series
A product of two Fourier series in the form of
SU.SV

where the row matrix S is of the same form as in Section 2.4 and vectors U and V contain Fourier
coefficients ; or v; can be written as follows:

SK,V. (35)
Matrix K, contains Fourier coefficients u; and is in the form of
Ky = ‘%_2“09 Uy L2 U
2u, 2ug+ uy, ug Uz, Uy + Uy,
2u,, Uy + Uz, 2y + Uy, Uy +ous, ... (36)
2uy, U, +u,, U+ us,  2ug + U,

3. BOUNDARY CONDITIONS

This chapter will deal with various types of boundary conditions on the surface of a body and
at the interfaces of different regions; we shall set up systems of equations which follow from these
boundary conditions for integration constants C. The solution of the boundary problems, i.e. the
grouping of equations into the resultant system of equations describing the whole boundary prob-
lem, will be investigated in the next chapter.

3.1. The third boundary condition on the surface of an annulus
We shall write the third boundary condition on the surface of an annulus for both external and
the internal surfaces of the annular region (cf. also [2])
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olr, @)

ar r=R

FA

= a(e) [4R, ¢) — to()] (37

where (@) and t,{¢) are the given functions. The upper sign in condition (37) refers to the case of
radius R being the outer radius of the annulus, the lower to the inner radius.

We substitute now for «r, @) and oKr, ¢)/or from (29) and (30) to (37) and expand «(p) and t,(¢p)
in a Fourier series. By means of relation (35) for a product of two Fourier series we obtain the
resultant equation to be written out in a system of equations for the various functions of argument
¢. We get

(K Mg + A,MR)C = F Zi + K(Tor — Zp) (38)

where vector T, contains the Fourier coefficients of function t4{¢). In the case of a{p) = « = const.,
matrix K, reduces to matrix «l where 1 is the unit matrix.

The same result would be obtained if we introduce into the equation (37} the derived Fourier
series for t{r, @), 0t/0r, a{¢p) and t,{), multiply the equation thus obtained successively by functions

for m =20

=

—Cos mQ for m; #0
T
and integrate it within the interval of 0 < @ < 1.

3.2. Boundary condition at the interface of two annuli or at the interface of an annulus and a circle
At the interface of two regions of radius R the following boundary conditions apply

ot
(R, 0) = 4 1(R, @) — Ay plo) 5:1 (39)
r=R
oty _ Oty vy
A o e S b v I (40)

where p(¢p) is the given function of the thermal contact resistance. Introducing in conditions (39),
(40), the series for t{r, ¢) and 8t/dr and the Fourier series for contact resistance p(¢p), we obtain
equations that can be written out for various functions cos m (as Section 2.3.1 implies m{® = m*1
fori =0,1,2,...}. We arrive at a system of equations which we write in matrix notation as follows:

%MRCR + kZRx (Hileﬂ — 4+1Kp H;M.'rz)cku + HIZR — Ak+1 KPkHZ}z 41)
AUOMR Cy + M) = Ay TIMR Coy g + ¥ ZY). 42)

In the case when region k is circular, matrices ¥My. ¥Mj and vector ,C, are used instead of ¥Mp.
*Mp and C, on the left-hand side of equations (41) and (42).

3.3. The third boundary condition on the surface of an annular sector for ¢ = ¢

Let us assume that both the heat-transfer coefficient «(r) and the ambient temperature 14(r)
vary arbitrarily along the boundary of the annular sector for ¢ = ¢ except for the limitation that
the boundary condition remains symmetric with respect to the x-axis. As shown by the results of
Section 2.3.2 it was necessary to solve the problem by the following approximation: we divided
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the whole region into several sub-regions by means of circles with radii r = R,. The given function
for the heat-transfer coefficient «(r) on the surface of the region was then approximated by a set
of “steps” of the type const/r on the surfaces of individual sub-regions. The mean ambient tempera-
ture ¢, for a sub-region is determined as the mean value of the function t,(r) in the interval
R,_, €r <R,

Along the circle of radius R, within the interval of 0 < ¢ < ¢ the condition of equality of tem-
peratures and heat flow must obviously hold

iRy, @) = ty+1(Ry, @) 43)
(R, @) _ 0t44(Re @)
6r r=Ry - ar lr=Rk. (44)

At variance to Section 3.2 the boundary conditions (43) and (44) cannot be fulfilled in this case
for each harmonic component of the series because the values of m® and m**? differ from each
other. Therefore we fulfil the conditions only approximately for a finite number of expansion
terms.

We introduce in condition (43) the series for r, ¢) in the form of (31a), multiply this equation
successively by functions

2 1
¢ L+ sin 2m{*+ Vg
2m$k+ 1) ¢

and integrate it within the interval of 0 € ¢ < ¢. The system of equations arrived at through this
procedure can, after rearrangement, be expressed summarily in matrix notation as follows
P* T I(MR, Cy + "Zg, + "Ty) = **iMg, Cosy + ¥71Zg, + *7'T,, (46)

A similar procedure adopted for boundary condition (44) differs in that the functions of the form
of (45) contain the values of m{®. We deduce that

cos mk* Vg (45)

Mg, C, + *Zp, = ¢* T VETIMR, Cpy g + M1 Zy). (47)
The elements of matrix ¢** 1% (or ¢*-** 1) are
(k¥ 1,k) = 2 ——I———T cos m** Vo . cos mPe de
b ) sin 2m{t* V¢ ' I
U+ s
2m$k + 1)¢
and after integration
G0 = 1 l:sin (M + m¥) ¢ sin (m+D — m®) ¢:| a8)
tJ sin2m** D | (mF*V + mg_k))d, (mE D — m}k))d)

1 + 2m$k+ 1)¢

For a prismatic fin we can proceed in an analogous manner.

3.4. The third boundary condition on the surface of an annular sector forr = R, and r = R,
Let us now deal with the third boundary condition for radius R, (or R,) which is in the form of

Fa2

5| = @) [UR, ) — to(@)] (49)

r=R
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(the upper sign applies to radius R,, the lower to radius R,). By multiplying this condition succes-
sively by functions in the form of (45) and integrating it within the interval of 0 < ¢ < ¢ we obtain
a system of equations that can be summarily written as follows

(X Mg + A Mp)C = F 1Zy + X — X(Zg — T) (50)

where the elements of matrix ;X and vector ,X are in the form of

¢
X =4 z{ a(p) cos myp . cos myp do

¢
2Xi=¢ ga(‘P) tolp) cos myp dg

and where

_2_ 1
¢ sin 2m’
1+ mdp

In the case when for radius R, (or R,) we have a, = const., fyg, = const. (or &, = const,, log, =
const.) we obtain the following simple relations

(o Mg + A M) Gy = — A* 2y, — 0,(*Zg, + *Ty — Tog,) }
(0 Mg, — A 3Mg ) C; = A 'Zy, — 0o( Zg, + To — Tor,)-

For a prismatic fin we can proceed in an analogous manner.

E=

(51)

3.5. Boundary conditions at the interface between annular region and annular sector in a *“*concentric”
arrangement
Assuming that on radius R (Fig. 3) within the interval of ¢ < ¢ < ¢, the boundary condition of

FiG. 3. Annular sector attaching to annular region in concentric
arrangement.
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the third type exists and the coefficients of thermal conductivity there are A, and 4,, we can write
the boundary conditions as follows

ot
Mgl = [nRe) - 6@)]  for ¢<o<é (52)
oL ot,
LS| I <
Ay or | A, ar | . for 0<@<¢ (53)
t(R, ) = (R, @) for 0<o<¢. (54)

Difficulties encountered in the solution of a boundary problem of this sort are due to the fact that
two different types of boundary conditions apply to a part of the annulus within the interval of
0 € ¢ < ¢,. To overcome that, we shall extend the course of a(¢p) hitherto defined in the interval
of ¢ < @ < ¢, only, to the interval of 0 € ¢ < ¢, and put there a(¢) = 0. The boundary condition
for radius R can then be written in the following form

1 oty

1=
or r=R

This equation comprises both boundary conditions (52) and (53). Function J(¢) takes the form of

ot,

Er_,=R for 0

= — a(@) [t;(R, @) — to()] + &o) 4,

N

¢ < ¢y (55)

{1 for 0<op<¢
oe) = 0 for ¢ <o <g,.
By multiplying the equation (55) successively by functions

¢i for m®=0
1

2 (1) (1
$cos me for m #£0

1
and integrating it within the interval of 0 < ¢ < ¢, we get a system of equations which may be
summarily written as follows

MGMRC, + 'Z3) = — K,GMR Cy + 'Zg + Tor] + 4,0[3Mr C; + *Zz] (56)

where vector Ty, contains the Fourier coefficients of function t4(¢). The elements of matrix @ are
in the form of

0= ijcos mPg . cos m{Ve de (57)
1

where
{1 for m® =0
& =
2 for m» £ 0.

Integrating we obtain

PP LR L T
i.j (mgl) + mg,z)) 4)1 (ms.l) . mg.z))d)l
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where
o = {% for mP=0
1 for m® # 0.

Note. Because the integrand equals zero [6(¢) = 0] within the interval of ¢ < ¢ < ¢, the integra-
tion of integral (57) is carried out in the interval of 0 < ¢ < ¢ only.

With boundary condition (54) we shall proceed in a manner analogous to that used in Section
3.3 for condition (43). Multiplying the equation (54) by functions of the form of (45) using the values
of m{?), we get, after rearrangement

IMRC, + 2Zg + T, = Y[3MR C, + 'Zg] (58)
where matrix ¢ has elements in the form of
¢

1+ W
or, after integration
v o= 1 [sin (MY + mP)p  sin ) — m) ﬂ
T + sin2mPp | (D + mP) é mP —mPe |
2mP¢

3.6. Boundary conditions at the interface between annular region and annular sector in an “eccentric”
arrangement
A schematic diagram of this arrangement is in Fig. 4. Referring to this figure we can write the
boundary conditions as

ot

b _ = o [nRe) - to(e)] for p<o<¢, (59
at, at, . Oty ]
2 — — —_— <

Ay e lz{ar Pzicos((p%—@) 6(’M_‘smi(go-{-qo) for 0<gp<¢ (60)
1(R, @) = t,(F, ¢) for 0<p<¢. (61

The basic difference between the previous boundary conditions and between the presently in-
vestigated boundary condition is that the regions which meet at the given radius have each a
different coordinate system. Thus it is necessary at the interface of both regions to have in mind
the dependence between these coordinate systems. On the whole we shall proceed in an analogous
way as in the Section 3.5. Boundary conditions (59) and (60) can be written in the form

0 J
Ay ”ﬁﬁrl r=R = — afp) [tl(R, Q) — to((p)] — 8(p) A, [_aff

. Oty 1 . ,
cos(¢+<p)—a—¢7;sm(<p+<p)], (62)

This equation is multiplied successively by functions
1 1
—_— for m¥=0

¢,
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F1G. 4. Annular sector attaching to annular region in eccentric
arrangement.

2
g—cos mVp  for mV #0
1

and integrated within the interval of 0 < ¢ < ¢, with respect to the independent variable ¢.
From geometrical considerations (see Fig. 4) follows that the dependence 7 and ¢’ on the angle ¢
has the form

F = J/[(Rsin @)* + (a — R cos ¢)*]
., . R
sin @’ = sin g =

We get equations that can be written in matrix notation as follows
MMr Cy + 'Zg] = = KIMR C;y + 'Zg + Tor] — 4,[,XC, + ,X]. (63)
Matrices ;X and X are respectively in the form of

X =&, Jiy iz Jiz .- 4X=£ZKU

121, les 122: Jzza ZKZJ

where
4 2 . . 2)
I;.; = [[cosmPe’ . cos (¢’ + @) + sinm{Pg’ _sin (¢’ + ¢)] m? 7~ cos m{Vgp do
0
¢ 2 2 : 2) z—my®
Jij= [[— cosmPe’ . cos(¢’ + @) + sinmPo’ .sin (¢’ + ¢)] m? #~™ =1 cos m{Vep de
o]

¢
m? . .
K;;= J[—;—(Z,,, JF) + by )sinm{P’ sin(@" + @) + Z,, o(F)cosmP’.cos(¢’ + @) [cosmV pde
0
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al— (m! = 0)
=1

2

o {m{V # 0).

Quantities Z,, «»(F) and ¢, » are the elements of vector 2Z: or *T, [cf. equations (31a) and (13)].
Now we introduce in condition (61) the series for f, and t,, multiply the equation, similarly as in
Section 3.3 or 3.5 by functions of the form of (45) using the values of m{? and integrate within the
interval of 0 < @' < ¢ according to the variable ¢’. The equations thus obtained may be written
in matrix notation as follows [refer also to the equation (58)]:
YC, +,Y=y(MC, + 'Zy). (64)
Matrices ;Y and ,Y are respectively in the form of

Y =C[Uie Vi U Voo 20} 2Y=£ZW1J‘
J

U21'* VZI: U22’ V225 R Z W2j
5.
where
¢,——-m(2) (2),.7 (2}, 1
U, = {f)r 1 cos mPg’ . cosmPg’ do
@ ——m;(2) (2) 07 (2),.7 ’
V. ;= [F™ cosmPe’ . cosmPg’ do
O
A = 2 ; 2 ’ ’
W, = g (Z;(F) + ty ) cOs Mg’ . cos mPe’ dg
s 2 [
! - sin 2mi2¢’
2miPg’
and where

F=acosg — \/[R* - (asing’)’]
sin @ = r sin ¢’
P = R @.
The elements of matrix ¥ take the form of
&
U, =¢ g cos m{e . cos mPp’ do’.

The boundary conditions for the case of a prismatic fin or a fin attached to the annulus from the
inside, can be written in an analogous manner.
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4. BOUNDARY PROBLEMS

Using the results of Section 3 it is possible (for a great number of boundary problems) to compile
a resulting infinite system of equations for the calculation of the integration constants. For the
actual solution of boundary problems we retain in the infinite series only few first terms of the
expansion and solve the remaining finite system of linear algebraic equations.

As already stated the method can be applied to the treatment of many other boundary conditions.
In view of the fact that in the analysis of laminar flow or the analysis of heat transfer in laminar
flow the partial differential equations which have to be solved are the same as the heat-conduction
equation discussed in the foregoing, the method evolved in the paper can be used for solving many
a problem of laminar flow in non-circular channels.

We shall now show solutions of some typical boundary problems.

Example 1: Solution of the boundary problem for an annular sector. Section 3.3 has outlined the
procedure to be adopted in the case where the heat-transfer coefficient varies along the periphery
of the annular sector (assuming the problem to be symmetrical with respect to the x-axis). Consider
the annular sector to be subdivided into sub-regions as shown in Fig. 2. For each sub-region on
radii R(R,R,,..., R,_,) we can write the boundary conditions in the form of (46) and (47). For
radii R, and R,, the resultant equations for the boundary conditions are (51) and (50) depending
on whether or not « is constant on that segment.

The resultant system of equations can be written as

MC=F (65)
where
M = a, Mg, — 4 Mj,, 0, 0, oy 0, 0, ]
21 1M, — M, 0, 0, 0
éM}h, —¢pl:2 §M;h, 0, ey 0, 0
0, P32 %MRZ, — 3Mg, , 0, 0
0, Mg, — ¢%33Mg,, , 0, 0
e ; ,. e 0 .............. 0 ........ , . 0, i akgMRk +,1§Mkk_
C=|C |, F=[ A'Zy, — ao(*Zg, + 'To — Toz,) |
C,; g, + T — 92 ('Zg, + 'Ty)
; ¢! 2Ly, — 'Zg,
Cy g, + Ty — > (P Ly, + ’T,)
¢23 3Ly, — L,
i

The solution of the system of equations (64) gives us directly all the integration constants, and,
when introducing the series for #(r, @), the distribution of temperatures. For the purpose of illustra-
tion, Fig. 5 plots the temperature field for the case when « is constant along the whole periphery
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and t, = 0. The annular sector was subdivided respectively in two, four and eight subregions.
The results of computation for four and eight subregions did not differ from each other. Fig. 5

FiG. 5. Temperature field in annular sector in case « is constant {t, = 0} along

periphery.
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FIG. 6. Fulfilment of the boundary condition (35) on interface of two sub-regions of annular sector for increasing
number of expansion terms (I-——number of expansion terms).
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gives the temperature field for four subregions and for four terms of the expansion in the individual
subregions of the annular sector. Fig. 6 indicates in another case how the boundary condition (43)
is satisfied at radius R, for an increasing number of terms in the expansion for t(r, ¢).

Example 2: Annulus attached to an annular sector in a concentric arrangement. The pertinent
boundary problem is shown schematically in Fig, 3. The third boundary condition is assumed to
apply at radii R, and R, [cf. Section 3.1, relation (38), Section 3.4, relation (51)]. The boundary
conditions at the interface between annulus and annular sector are described in Section 3.5 by the
equations (56) and (58).

60 | 60
1=5 7,=5
s / 174 VAl
2] N /‘;/ f
AV 4l
/ [
; 55 o ! 55 et |
l
1 |
|
I
!
]
|
i
1
%05 0 b 20 %% © r 20
¥ P
(a) (b)
60 :
\/=5 N
I8 /
y/
A
/L
L |
t 55
s , I
0 ® 20
kP

(c)

F1G. 7. Fulfilment of the boundary condition (54) on inter-

face between annular sector and annulus for different

number of expansion terms in individual regions (I,—

number of expansion terms in annular region, I,—number
of expansion terms in annular sector).
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Joing the equations we obtain
MC=F
where
M=|a éMRo ~ 4y ;MR 0
K, Mg, + 41 3Mg,, =1, 03Mp,
- 'I’ iMRl gMRt

0, ay IMpg, + 4, 3Mg,
C=[C] F=[i'Zy + aoTor, — 'Zg,)
[ J — A 1Zy, — K (P Ly, + Tog) + 2, 0 2Zg,
— g, — Ty + ¥ 'L,
— Ay 22, — ay(*Zg, + Ty — Tog,)

The solution of the system of equations gives the integration constants C,; and C,. For the

purpose of illustration, Fig. 7 shows by way of a similar case, how the boundary condition (54)
is satisfied for different numbers of terms of the expansion in the annulus and fin.

( F1G. 8. Temperature field of longitudinally finned fuel element.
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)

FiG. 9. Temperature field of longitudinally finned fuel element.

Example 3. As a practical application of the problems under examination, Figs. 8 and 9 plot the
temperature fields of two versions of fuel elements indicated schematically in Fig. 1. The course
of the heat-transfer coefficient along the surface of the investigated regions was obtained through
the solution of laminar flow in the respective channels, made under some simplifying assumptions.
The method used for that purpose was the same as that applied to the solution of the temperature
fields.

5. CONCLUSION

The method presented in the paper enables us to solve a number of boundary problems of heat
conduction in which a cylindrical region is attached to a longitudinal fin. It can equally well be
applied to numerous problems of laminar flow in non-circular channels.
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Résumé—L article traite d’une solution du champ de température dans des corps cylindriques consistant
en plusieurs cylindres circulaires creux munis d’ailettes longitudinales extérieures ou intérieures ayant la
forme de secteurs annulaires ou de prismes. Le probléme est analysé avec des conditions aux limites
variables le long de la périphérie, et pour une distribution arbitraire de sources sur toute I’étendue de la
section droite. Des problémes de ce type sont rencontrés dans des calculs thermiques d’éléments de com-
bustible de réacteur nucléaire a ailettes longitudinales ou de tubes d’échangeurs de chaleur & ailettes
longitudinales. La méthode développée ici peut aussi étre appliquée aux problémes concernant ’écoule-
ment laminaire dans des conduites non-circulaires.

4p
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Zusammenfassung—Die Arbeit behandelt eine Losung des Temperaturfeldes in zylindrischen Koérpern,

die aus verschiedenen Ringridumen bestehen und mit dusseren oder inneren Lingsrippen in Form von

Ringsektoren oder Prismen versehen sind. Das Problem wird analysiert fir Randbedingungen, die sich

iiber den Umfang éndern und fiir beliebige Quellverteilungen iiber den Querschnitt. Probleme dieser Art

treten auf bei der thermischen Berechnung ldngsberippter Brennstoffelemente von Kernreaktoren oder

lingsberippter Rohre von Wirmeiibertragern. Die hier entwickelte Methode kann auch auf Probleme
der Laminarstrémung in nichtkreisférmigen Kanilen angewandt werden.

ABHOTAIMA—B cTaThe paccMaTpuBaeTCH pellleHMe A TEMIIEPATYPHOTO MOJA B IMIHHAPH-
YeCKHX TeJaX, COCTOHIIMX M3 HECKOJNBKHX KOJel ¢ BHEUIHUMHM MM BHYTPEHHWMH NPONOJb-
HHMK peGpaMi B BHe CEKTOPOB KOJBLIA HIIH NPH3M. AHAIHBHPYETCA 3a/iada A TPAHKYHKEX
ycioRu, MEHAIIMXCA MO OKPYMKHOCTH M 1A MCTOYHHKOB, MPOMSBONBHO PaCHpeNeIeHHHX
110 ceveHMI0. 3afauM TAKOr0 THOA BCTPEYAIOTCHA B TEINIOTEXHUYECKAX pacyerax TOMIMBHHX
2JIEMEHTOB ANEPHHX PEAKTOPOB ¢ NMpPOJOJNBHHME pepaMmm uan TPYy6 TemmooOMeHHHKOB C
NpOROABHMM opefpenuem. MeTon, HCIIOIL3OBAHHEIN B CTAaThe, MOKHO TAKIKe IPUMEHHTH K
3a7a4aM O JJAMMHAPHOM TedeHMN B HEKPYIJIHX Tpy6ax.



