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Abstract-The paper deals with a solution of the temperature field in cylindrical bodies consisting of 
several annuli provided with external or internal longitudinal tins in the shape of annular sectors or prisms. 
The problem is analysed for boundary conditions varying along the periphery, and for an arbitrary distribu- 
tion of sources over the cross section. Problems of this type are encountered in the~al-engin~~ng com- 
putations of longitudinally finned nuclear reactor fuel elements or of longitudinally finned tubes of heat 
exchangers. The method evolved in the paper can also be applied to problems concerning laminar flow in 

non-circular channels. 

Cartesian coordinates [ml, [m] ; 
polar coordinates [ml, [rad] ; 
radius of the interface of the two media [m] ; 
temperature [“C] ; 
heat conductivity [kcal/m h “C] ; 
heat-transfer coefficient [k&/m’ h “C] ; 
thermal contact resistance [m2h”C!/kcal] ; 
density of heat sources [kcal/m’h]. 

1. INTRODUCTION 

ONE OF the interesting problems of heat conduction which is of considerable importance in practical 
applications, is the analysis of the temperature field in cylindrical bodies with projecting longi- 
tudinal tins. Problems of this sort are met with in detailed analyses of heat conduction in finned 
tubes of heat exchangers and in particular, in longitudinally finned nuclear reactor fuel elements. 
Figure 1 shows two versions of a fuel element in which this type of problem occurs. The longitudinal 
fins are considered to be shaped like annular sectors or like prisms. The body is considered as 
composed of several simple regions and the solutions of heat-conduction equation in individual 
regions is found in the form of infinite series. Then the solutions in indi~du~ regions are bound 
together by means of boundary conditions on the interfaces between these regions. Thus we receive 
an infinite system of linear algebraic equations for the integration constants. This system of equa- 
tions was solved with the help of the method of reduction. The paper does not deal with the analysis 
of the application of this method in our calculations. 

The computation assumes an arbitrary distribution of heat sources across the cross section, 
and boundary conditions varying along the periphery. Heat conduction in the direction of the 
z-axis is neglected. 

It is also assumed in our considerations that the heat conductivity of the material A, the 
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FIG. 1. Some types of longitudinally finned fuel elements in which the examined 
problem occurs (l-fuel; 2-tan; 3-crass section for flow of cooling 

medium). 
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heat-transfer coefficient for the boundary condition a and the contact resistance on the interface 
of the two media p are independent of temperature. However, cases including temperature depend- 
ent coefficients Iz, ~1, p can also be solved on the basis of [2]. 

2. SOLUTION OF HEAT-CONDUCTION EQUATION IN VARIOUS COORDINATE SYSTEMS 

2.1. Solution of the heat-conduction equation in pglar coordinates 
The heat-conduction equation in the form of 

may be rewritten for polar coordinates in the form of 

For the sake of simplicity it is assumed that the problem is symmetric with respect to the x-axis. 
Then the solution of the equation (2) may be sought in the form of 

t = f f; COS m&l. 
i=O 

First we expand the right-hand side of equation (2) in a Fourier series, 

@f@ = iEo g,(r) COS m,cp 

where functions cos rn,? satisfy conditions (cf. Section 2.3) 

0 i#j 

% 
cos m,cp . cos rn,? dq = 

!?!h+z) i=j. 

(3) 

(4) 

(5) 

Multiplying successively equation (4) by functions cos m,cp and integrating with respect to variable 
cp in the interval of 0 < cp < c$, we obtain, by using (5) the following expression for the Fourier 
coefficients 

6 

gi(r) 2 
1 g(r, cp) = 

4 I + sin 2m$$ s 
- cos “iv dq. 

A 

2m,4 O 

In the case of g = const, we find 

g,=48 sin rn,4 

A 2l?li4 + sin 2m$$’ 

(6) 

(7) 

Introducing series (4) and the assumed form of solution (3) in the differential equation (2) we 
obtain an equation that can be written out for various functions of variable cp (i.e. for cos micp). 
The ordinary differential equations thus arrived at are in the form of 

&‘f+i_&f-$/i= -gAr) (i = 0, 1,2,. . .). 



1308 J. SCHMID 

Solution of these differential equations can be effected by means of the method of integrating 
factors [l]. We obtain* 

f, = &mi + ~~r-mi _ rmi j r’-@mi+i) T gi(rJ’) r’rmi+i d,J’ dr’ for mi # 0 (9) 
10 rb 

fi = A, + B, In r - j l/r i g,(r”) r” dr’ dr’ for mi = 0. (10) 
i-0 rb 

In the case where none of the values of mi equals zero, we may, on introducing in series (3), write 
the solution of equation (2) in the form 

t(r, cp) = f [A,F + Bir-m* +Zi(r)] COS micp ; (11) 
i=O 

if some of the values of mi is equal to zero (let that be for i = 0), we obtain the solution in the form 
of 

t(r, cp) = A0 + B, In r + zo(r) + ,z [AiP + Bir-mi +&(r)] cos m,cp (12) 

where 

Z i(r) = _ pi j r’ -(*mi+ 1) 1 gi(rJ’) ,.ffmi+ 1 d,.” &J. 

10 
(13) 

Note 1. In the case of the region being circular, constants Bi are equal to zero for physical reasons. 
Note 2. As Section 2.3 will indicate, it is profitable to modify solution (11) by the addition of a 

constant (let us denote it by to). The solution thus obtained in the form of 

t(r, cp) = to + f [AiP + Bir-mi + Zi(r)] COS m# (lla) 
i=O 

also satisfies the differential equation (2). 

2.2. Solution of the heat-conduction equation in the Cartesian coordinates 
Assuming again that the problem is symmetrical with respect to the x-axis, we can write the 

heat-conduction equation as 

a*t a*t cd& Y) s+ayz=- ;1 (14) 

and seak its solution in the form of 

t = f f; cos m,y. (15) 
i=O 

Using a procedure analogous to that of the preceding section, we obtain for the solution of equation 
(14) a series (assuming none of the values mi equals zero) 

t(X, y) = to + f. [A, em+ + Bi eerncx +Z,(X)] COS miy (16) 

* The integrals must be thought of as indefinite integrals: r,, and rb are the suitably chosen limits. 
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where 

The Fourier coefficients of function g(x, y) can be determined in a manner similar to that used in 
Section 2.1. Thus 

Y 

(18) 

or for g = constant 

gr=49 
sin mi Y 

Iz 2m,Y + sin 2m,Y’ 
(19) 

2.3. Determining the values m, 
The boundary conditions on the surface of the regions examined and at the interface of the 

two media will be dealt with in detail in Section 3. In what follows we shall mention the boundary 
conditions only in so far as they are required for the determination of the values of mp 
2.3.1. The exffrnine~ reg~n is circular or annular. In the case where the examined region is circular 
or annular, we obtain for reasons of cyclicity of the solution (in dependence of angle cp) the following 
values Of Pli : 

mi = 0, 1,2,. . . . (20) 

If, however, the solution is to be repeated N-times along the periphery [see e.g. Fig. l(a) where 
N = 81, we obtain 

mi = 0, N, 2N,. . . . (21) 

2.3.2. The examined region is in the form of an annular sector. Let us assume that along the radius 
vector for 9 = I$ (cf. Fig. 2) the third boundary condition applies in the form of 

1 R at(r, 49 -- 
r acp = 44 Ct(r, 44 - to1 

a=$ 
(22) 

where to is the ambient temperature. Introducing form (lla) to condition (22) we obtain 

1 l/r t: [A,J”’ + &r-m’ + Z,(r)] mi sin m& = or(r) C [AiP* + Bf-mg + ZJr)] cos m& (23) 

If the boundary condition is required to be satisfied for the various harmonic components, we 
obtain for the values of m1 a transcendental equation in the form 

mb, tan rn$ = 7 rf$. 

As this equation implies, product a(r). r must be constant, i.e. 
effkient along radius-vector for cp = $J must be in the form of 

a(r) = constlr. 

40 

the course of the heat-transfer co- 
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4K’W 
aK(@ 

x 

FIG. 2. Sketch of fin in the shape of annular sector with third boundary 
condition. 

Thus we obtain the following equation for the determination of the values of m 

XtanX = C 

where 

(24) 

x = m4, 
c = ah) r09 

A 
(25) 

and r,, is a suitably chosen radius. 
It can be demonstrated that the pair of roots of equation (24) satisfy conditions (5). In the case 

a + 0 we obtain the so called second boundary condition. Numbers Xi assume the values of 

xi = 0, II, 2n,. . . 
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whence 

n 2n 
mi=O,;1;,~.-.* 

On the other hand, for a + 00 we obtain the so called first boundary condition. The values of mi 
are 

17r 3n 
mi =z;j;‘@...; 

2.3.3. The examined region is prismatic. We assume that the third boundary condition 

now applies along the straight line y = Y Analogously to Section 2.3.2 this implies that the values 
of m, are the roots of the equation 

a(x) mYtanmY =TY. 

It is, therefore, indicated that along the line y = Y we must have a(x) = const. 

2.4. Resultant symbolic representation of expressions for variations of temperature t and derivative 
at/ar 

2.4.1. Circular region. In view of Section 2.3, series (12) for the region k may be written in matrix 
symbolics as follows : 

t&t rp) = %&!W ,C, + kZ,) (27) 

where the row matrix ks, square matrix :M, and vectors ,C, and kZp are respectively in the form of 

!Sq = [cos m$‘cp, cos rnP$, cos m',k)cp, . . .} 

1 
, kzr = 

and where functionsZi(r~ are given by expression (13). On carrying out di~erentiation at,/& we 
obtain the expression 

&(r, 9) 
- = “s&M; ,C, + “Z;) 

(7r (28) 

where matrices :M: and ‘Z: are derivatives of matrices M, and kZ, 
2.4.2. Annular region. In the case of an annular region we obtain analogously to Section 2.41 

tk@? q) = s&kM~ ck + kzr) (29) 
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where the rectangular matrix ,kM, and vector C, are respectively in the form of 

lM,= 1, lnr -, C,=-Ar’ 

rmltk) r-ml(k) B$’ 

p(k) 
, 

r-m2(r) A’:’ 

I.$‘:’ 

On carrying out differentiation at,/& we-obtain 

v = ‘S&M; C, + &Z;) (30) 

where ,kMi is the derivative of matrix ;M,. 
2.4.3. Annular sector. If the third boundary condition is applied along the radius vector for 

cp = 4, the temperature distribution is given by the expression [cf. equation (1 la)] : 

hk, cp) = to + ~&,kM, G + “ZJ (31) 

where 

$g, = pdk), 

[ 

r-m(k) 

rml(k) 

’ 1. 

r--m,+) 

. . . . 

The meaning of the other matrices and vectors is identical with that of the preceding sections ; 
the values of mjk) are determined by solving the equation (24). 

From the point of view of the solution of the boundary problems, it is convenient to expand 
the constant to in a Fourier series with respect to functions cos mjk’cp. Relation (31) can be then 
rewritten in the form of 

where 
Ur, cp) = %+,(,kM, Ck + kZ, + qo) (31a) 

kTo = 4 9, sin rn$$j 

2m$%#1 + sin 2mbk+$ 
1 

On carrying out differentiation at,pr we obtain the expression 

v = %&M; C, + “Z;). (32) 

2.4.4. Prismatic region. In view of the expression (16) and Section 2.3.3, the relation for the distribu- 
tion of temperature t&, y) may be written as follows : 

t,(x, y) = t, + %@W, C, + kZ,) (33) 
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where 

ks, = [cos m$)y, cos mik)y, . . .] 

m, = 

[ 

emo(k e-mo(k)x kZ 9 x = Z,(x) 

e ml(Vs 

’ e?)X 1 [.I z l(X) 
* . 

and functions Z,(x) are given by expression (17). A modification similar to that of Section 2.4.3 
will give 

t,(x, y) = %JkM, Ck + kZ, + “r,) (334 

where vector “r, is of the same form as in Section 2.4.3 with the only exception that angle 4 has 
been replaced by the value Y. 

The derivative &.jJax is in the form 

+ kz:). (34) 

2.5. Matrix notation of the product of two Fourier series 
A product of two Fourier series in the form of 

su.sv 

where the row matrix S is of the same form as in Section 2.4 and vectors U and V contain Fourier 
coefficients Ui or Ui can be written as f0110WS: 

SK,V. 

Matrix K, contains Fourier coefficients tli and is in the form of 

K, = f 2u,, u1 u2 u3 . . . 

2u1, 2% + u2, Ul + u3, u2 + u4, . . . 

2u2, Ul + u3, 2l.4, + u4, u1 + up . . . 

2U3, u2 + u4, 111 + us, 2u(, + u(j, . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3. BOUNDARY CONDITIONS 

(35) 

(36) 

This chapter will deal with various types of boundary conditions on the surface of a body and 
at the interfaces of different regions; we shall set up systems of equations which follow from these 
boundary conditions for integration constants C. The solution of the boundary problems, i.e. the 
grouping of equations into the resultant system of equations describing the whole boundary prob- 
lem will be investigated in the next chapter. 

3.1. The third boundary condition on the surface of an annulus 
We shall write the third boundary condition on the surface of an annulus for both external and 

the internal surfaces of the annular region (cf. also [2]) 
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(37) 

where a(@ and t&f are the given functions. The upper sign in condition (37) refers to the case of 
radius R being the outer radius of the annulus, the lower to the inner radius. 

We substitute now for f(r, cp) and a@, cp)/& from (29) and (30) to (37) and expand cr(cp) and to@) 
in a Fourier series. By means of relation (35) for a product of two Fourier series we obtain the 
resultant equation to be written out in a system of equations for the various functions of argument 
9. We get 

(K, ,M, -t 1 $G) c = f % + K&T,, - Z,) (38) 

where vector TOR contains the Fourier coefficients of function t&). In the case of a@) = a = const., 
matrix K, reduces to matrix al where I is the unit matrix. 

The same result would be obtained if we introduce into the equation (37) the derived Fourier 
series for t(r, (p), &/Jr, a(@ and to(q), multiply the equation thus obtained successively by functions 

1 _ 
71 

for mi = 0 

2 
- COS m&2 
n 

for m, # 0 

and integrate it within the interval of 0 < tp d TC. 

3.2. ~o~~~ry c~nditiu~ at the inter~ce ujtwo annuli or at the i~ter~ce of an annuls and a circle 
At the interface of two regions of radius R the following boundary conditions apply 

at,+, 

atk+l A- 
kar r=R= k-k’ dr r=R 

(40) 

where p(@ is the given function of the thermal contact resistance. Introducing in conditions (39), 
(40) the series for t(r, cp) and at/&- and the Fourier series for contact resistance p(cp), we obtain 
equations that can be written out for various functions cos m,q (as Section 2.3.1 implies mikt = ml”’ It 
for i = 0, 1,2, . . .). We arrive at a system of equations which we write in matrix notation as follows : 

iMRCk -I- kZR=(kt$Ms - &+lKpk+iMjj)Ck+r + k+iZR - &flKPk+‘Zk (41) 

&(,$&c, + %h) = &+1(~+;M;1Ck+i + k+lZ;). (42) 

In the case when region k is circular, matrices :MR. :MZ and vector ,C, are used instead of iMR, 

k,Mk and Ck on the left-hand side of equations (41) and (42). 

3.3. The third boundary condition on the surface of an annular sector for q = C# 
Let us assume that both the heat-transfer coefficient a(r) and the ambient temperature t,(r) 

vary arbitrarily along the boundary of the annular sector for p = (b except for the limitation that 
the boundary condition remains symmetric with respect to the x-axis. As shown by the resufts of 
Section 23.2 it was necessary to solve the problem by the following approximation: we divided 
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the whole region into several sub-regions by means of circles with radii r = R,. The given function 
for the heat-transfer coefficient a(r) on the surface of the region was then approximated by a set 
of “steps” of the type const/r on the surfaces of individual sub-regions. The mean ambient tempera- 
ture kt, for a sub-region is determined as the mean value of the function t,(r) in the interval 
R,_,<r<Rb 

Along the circle of radius Rk within the interval of 0 < cp < C#J the condition of equality of tem- 
peratures and heat flow must obviously hold 

t&r q) = tk + it&> q) 

‘%tRk, q) = atk + ,& 9) 
ar r=R,‘ ar ’ r=Rk 

(43) 

(44) 

At variance to Section 3.2 the boundary conditions (43) and (44) cannot be fulfilled in this case 
for each harmonic component of the series because the values of mi”’ and mf+‘) differ from each 
other. Therefore we fulhl the conditions only approximately for a finite number of expansion 
terms. 

We introduce in condition (43) the series for t(r, q) in the form of (31a), multiply this equation 
successively by functions 

and integrate it within the interval of 0 < cp < 4. The system of equations arrived at through this 
procedure can, after rearrangement, be expressed summarily in matrix notation as follows 

#k+l’k)(~$&kCk + kZR, + “r,) = k+$&kCk+I + k+lZRk + k+lTO. (46) 

A similar procedure adopted for boundary condition (44) differs in that the functions of the form 
of (45) contain the values of mik). We deduce that 

;M;,Ck + kzh, = f#+k’k+l)(k+:M;pkCk+l + k+lZ;p,). (47) 

The elements of matrix #k+ ‘Sk1 (or #k*k+ ‘)) are 

c$j:; lwk) = i sin im(,, 1)4 cos rnik+%p . cos rny’q dqp 

l+ 
2m!‘:‘)~ 

0 

and after integration 

‘) + ‘) - @“I; 1, k) 1 (m(ik+ + my)) 4 sin (mjk = my’) 4 

l+ 
sin 2mik+‘)4 (m(>+l) + my))4 + (mjk+‘) - mjk)) 4 1 ’ (48) 

2mik+ ‘) 4 
For a prismatic fin we can proceed in an analogous manner. 

3.4. The third boundary condition on the surface of an annular sector for r = Rk and r = R. 
Let us now deal with the third boundary condition for radius R, (or R,) which is in the form of 

= ~6~) CNR, cp) - totdl 
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(the upper sign applies to radius R, the lower to radius R,). By multiplying this condition succes- 
sively by functions in the form of (45) and integrating it within the interval of 0 < cp < #J we obtain 
a system of equations that can be summarily written as follows 

(,X3MR+;I-3M;)C= TxIZ;+,X-,X(Z,-T,) (50) 

where the elements of matrix ,X and vector zX are in the form of 

lxi,j = < 1 CC(CQ) cos miq . cos m,y, dc;o 
0 

and where 

<=g l 
sin 2mi#’ 

I+- 
2mi4 

In the case when for radius Rk (or R,) we have ak = const., tOBk = const. (or a0 = const., tORk = 
const.) we obtain the following simple relations 

(a~ :$& + A ;M;,) Ck = - A kZhk - ak(kZsk + *O - TORI) 

(a0 :MRo - Iz :M&)C, = 1 tZ& - a,(‘Z,, + To - TORo). 
(51) 

For a prismatic fm we can proceed in an analogous manner. 

3.5. ~~u~ary co~itions at the interface between annular region and annular sector in a “concentric” 
arra~ement 

Assuming that on radius R (Fig. 3) within the interval of # < 40 < #* the boundary condition of 

FIG. 3. Annular sector attaching to annular region in concentric 
arrangement. 
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the third type exists and the coefficients of thermal conductivity there are A1 and A,, we can write 
the boundary conditions as follows 

A!!!& 
l ar r=R = 

- 444 [WY cp) - tow1 for d<cP<& 

for 0 < cp < f$ (53) 

for 0 < cp < 4. (54) 

Difftculties encountered in the solution of a boundary problem of this sort are due to the fact that 
two different types of boundary conditions apply to a part of the annulus within the interval of 
0 < cp < 41. To overcome that, we shall extend the course of a(q) hitherto defined in the interval 
of 4 < cp < & only, to the interval of 0 < cp < 4, and put there a(cp) = 0. The boundary condition 
for radius R can then be written in the following form 

Jat, 
l ar ,=R = - 

This equation comprises 

a(cp) [MT d - t 0 (cp)l + a@) J at, 2 ar r=R 

for 0 < cp < 41. (55) 

both boundary conditions (52) and (53). Function 6((p) takes the form of 

(1 for 0 < cp 6 4 

By multiplying the equation (55) successively by functions 

for m!‘) = 0 I 

f cos m{“Cp for ~6’) # 0 , 

and integrating it within the intervil of 0 < cp < +I we get a system of equations which may be 
summarily written as follows 

rZ&M;pCl + ‘ZX) = - K,[:M,C, + ‘Z, + TORI + A,B[;MXC, + ‘Z;] (56) 

where vector TOR contains the Fourier coefficients of function to(~). The elements of matrix 8 are 
in the form of 

It, 

where 

Integrating we obtain 

1 for 
&= 

2 for 

@i.j = ” [ 

sin (mi.l) + my)) 4 
(mien + my)) 4r 

m!‘) = 0 
I 

mi2) # 0. 

sin (m(il) - mt2)) 4 

+ (m(il) - m$2);$, 1 

(57) 
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where 

&I = f for ~21” = 0 

1 for rnt*’ # 0. I 

Note. Because the integrand equals zero [&q) = O] within the interval of 4 < cp < Cp 1, the integra- 
tion of integral (57) is carried out in the interval of 0 6 cp 6 $ only. 

With boundary condition (54) we shall proceed in a manner analogous to that used in Section 
3.3 for condition (43). Multiplying the equation (54) by functions of the form of (45) using the values 
of mi2), we get, after rearrangement 

2M C + 2ZR + ‘To = +[-MR Cl + ‘Z,] 3 R 2 (581 

where matrix # has elements in the form of 

yj = 2 1 

@l+ 
sin 2n1{~‘@ 

cos m!“tp cos m’i2’(p dtp 
J 

2mj2’d, 

or, after integration 

uvi,j = 
1 

1+ 
sin 2rni2@ [ 

sin (my) + mj2’) Cp + sin (mj’) - mj2’) Cp 

(my) + rni”)) # (m(J) - mt2))4 ’ 
J t 1 

2rni2+j 

3.6. Boundary conditions at the interface between annular region and annular sector in an “eccentric” 
arrangement 

A schematic diagram of this arrangement is in Fig. 4. Referring to this figure we can write the 
boundary conditions as 

$5 
ar ,=R 

= - 4rp) [t,(R, 9) - GkP)l for (b<u,<q& (59) 

t,w, cp) = t,(r, 9’1 for 0 < cp 6 4, (61) 

The basic difference between the previous boundary conditions and between the presently in- 
vestigated boundary condition is that the regions which meet at the given radius have each a 
different coordinate system. Thus it is necessary at the interface of both regions to have in mind 
the dependence between these coordinate systems. On the whole we shall proceed in an analogous 
way as in the Section 3.5. Boundary conditions (59) and (40) can be written in the form 

A!!!4 
’ dr r=R 

= - cc(q) [t,tR. cp) - t&p)] - 6(q) A2 $ =_ cos tq f q’) - 2 $ sin (q -t 11 I . (62) 
* I 

This equation is multiplied successively by functions 

for rni” = 0 



SOLUTION OF SOME HEAT CONDUCTION BOUNDARY PROBLEMS 1319 

FIG. 4. Annular sector attaching to annular region in eccentric 
arrangement. 

2 

Icos@‘rp L 
for VI!‘) # 0 

and integrated within the interval of 0 < cp < 41, with respect to the independent variable cp. 
From geometrical considerations (see Fig. 4) follows that the dependence ? and q’ on the angle cp 
has the form 

f = J[(R sin cp)’ + (a - R cos cp)‘] 

R 
sin cp’ = sin cp i;. 

We get equations that can be written in matrix notation as follows 

A,[;M, C, + ‘Z;] = - K,[:MR C, + IZ, + To,] - &XC2 + 4X]. (63) 

Matrices JX and qX are respectively in the form of 

where 

li,j = j [COS ??Iy’q’. COS (cp’ -I- cp) -I- sin my’cp’. sin (cp’ + cp)] my’ Y”‘j(*)- ’ ~0s m{“cp &p 
0 

Ji, j = I[- COS mj%p'.COS($7' + cp) + sin m$2+p'. sin(cp’ + q2)]m~)I-mJ(2’-1 cos mj"cp dp 
0 

4 

Ki,j = 
S[ 

m!Z) 
$-(Z,p(f) + t,,,jc2Jsinmy)cp’.sin(cp’ + cp) + Z~,&)cosm$%#.cos(cp + cp) cos m\l) cpdq 

0 
1 
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i 

& (my = 0) 

t= 

; (my) # 0). 

Quantities Z,,,@) and t,,,jCz, are the elements of vector ‘Zi or 2T0 [cf. equations (31a) and (13)]. 
Now we introduce in condition (61) the series for t, and t,, multiply the equation, similarly as in 

Section 3.3 or 3.5 by functions of the form of (45) using the values of m12) and integrate within the 
interval of 0 < ~0’ 6 #’ according to the variable 40’. The equations thus obtained may be written 

Matrices ,Y and zY are respectively in the form of 

,Y = / 

in matrix notation as follows [refer also to the equation (SS)] : 

,Y cz + 2Y = i@MC, + IZ,). (64) 

where 

Ui, j = 1 F-m~‘2’ cos mj2)q’ . cos m$2)(p’ dq’ 
0 

&, j = 1 F-mj’2’ ~0s mj2)(p’ . cos mi2)(p’ drp’ 

0 

K,j = 1 (Zmja,(F) + tmj(z)) cos m:2)(pf. cos mj2’yl’ dq’ 
0 

<=$ 1 

1+ 
sin 2miz’#’ 

2mi2+b’ 

and where 

V = a cos cp’ - J[R2 - (a sin cp’)‘] 

sin 4p = L. sin tp’. 
R 

The elements of matrix ‘J7 take the form of 

9’ 
gzi. j = t f cos rny)cp _ cos mj2’(p’ drp’. 

0 

The boundary conditions for the case of a prismatic fin or a tin attached to the annulus from the 
inside, can be written in an analogous manner. 
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4. BOUNDARY PROBLEMS 

Using the results of Section 3 it is possible (for a great number of boundary problems) to compile 
a resulting infinite system of equations for the calculation of the integration constants. For the 
actual solution of boundary problems we retain in the infinite series only few first terms of the 
expansion and solve the remaining finite system of linear algebraic equations. 

As already stated the method can be applied to the treatment of many other boundary conditions. 
In view of the fact that in the analysis of laminar flow or the analysis of heat transfer in laminar 
flow the partial differential equations which have to be solved are the same as the heat-conduction 
equation discussed in the foregoing, the method evolved in the paper can be used for solving many 
a problem of laminar flow in non-circular channels. 

We shall now show solutions of some typical boundary problems. 
Example 1: Solution of the boundary problem for an annular sector. Section 3.3 has outlined the 

procedure to be adopted in the case where the heat-transfer coefficient varies along the periphery 
of the annular sector (assuming the problem to be symmetrical with respect to the x-axis). Consider 
the annular sector to be subdivided into sub-regions as shown in Fig. 2. For each sub-region on 
radii R,(R,, R,. . . . , R,_ 1) we can write the boundary conditions in the form of (46) and (47). For 
radii R, and Rk, the resultant equations for the boundary conditions are (51) and (50) depending 
on whether or not o! is constant on that segment. 

The resultant system of equations can be written as 

where 

M = 

I 

a,, :MRo - I :M&, 

42. 1 :MR,, 

‘M’ 3 RI, 

0, 

I 0, 

MC=F 

. 0, . . . , 0, 0, 

0, . . . ) 0, 0 

0, . . . ) 0, 0 

- 3M~z 3 9 .**, 0, 0 

-92.3;M;2, . . . . 0, 0 
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

0, 0, . ..) O, ak 3wR, + n3kMXk. L 0, 
c= 2 ‘ZX, - ao(‘zR, + ‘To - TORJ 

‘ZR, + 2To - 42’ ‘(%R1 + ‘T,) 

$J 
1.222 

RI - 'G, 

3zR2 + 3T0 - $J3.2(2ZR2 + 2T,,) 

(62. 3 “ZX, - 2ZR, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
- 1 ‘ZX, - ak(kZR, + qo - ToRr 

(65) 

The solution of the system of equations (64) gives us directly all the integration constants, and, 
when introducing the series for t(r, cp), the distribution of temperatures. For the purpose of illustra- 
tion, Fig. 5 plots the temperature field for the case when a is constant along the whole periphery 
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and to = 0. The annular sector was subdivided respectively in two, four and eight subregions. 
The results of computation for four and eight subregions did not differ from each other. Fig. 5 

Fk. 5. Temoerature field in annular sector in case a is constant (l, = 0) along 
periphery. 

FIG. 6. Fulfilment of the boundary condition (35) on interface of two sub-regions of annular sector for increasing 
number of expansion terms (I-number of expansion terms). 
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gives the temperature field for four subregions and for four terms of the expansion in the individual 
subregions of the annular sector. Fig. 6 indicates in another case how the boundary condition (43) 
is satisfied at radius R, for an increasing number of terms in the expansion for t(r, cp). 

Example 2: Annulus attached to an annular sector in a concentric arrangement. The pertinent 
boundary problem is shown schematically in Fig. 3. The third boundary condition is assumed to 
apply at radii R,, and R2 [cf. Section 3.1, relation (38), Section 3.4, relation (51)]. The boundary 
conditions at the interface between annulus and annular sector are described in Section 3.5 by the 
equations (56) and (58). 

f 

60 

(a) 

60 

(b) 

60 

FIG. 7. Fultilment of the boundary condition (54) on inter- 
face between annular sector and annulus for different 
number of expansion terms in individual regions (II-- 
number of expansion terms in annular region, I,-number 

of expansion terms in annular sector). 
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Joing the equations we obtain 

where 
M = 

J. SCHMID 

MC=F 

K,, :MR, + 4 :W,, 

I 

a0 :MRo - AI :M&,, 0 

- A, 8 ;M;, 

- ti :MR~ 2M 3 RI 

0, a2 iWt2 + 4 %G, 
! _ 

c = cl 

Ll 

F = 2, ‘z;, + I&,(&& - %,J 

C - I, ‘ZR, 

1 

- K,,(%, + TORI) + 4 @ 2G, 

- 2ZRI - ‘To + VZ,, 

- 1, ‘z;, - a2(2zR, + ‘To - T,& 

The solution of the system of equations gives the integration constants C, and Cz. For the 
purpose of illustration, Fig. 7 shows by way of a similar case, how the boundary condition (54) 
is satisfied for different numbers of terms of the expansion in the annulus and tin. 

FIG. 8. Temperature field of longitudinally tinned fuel element. 
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FIG. 9. Temperature field of longitudinally tinned fuel element. 

Example 3. As a practical application of the problems under examination, Figs. 8 and 9 plot the 
temperature fields of two versions of fuel elements indicated schematically in Fig. 1. The course 
of the heat-transfer coefficient along the surface of the investigated regions was obtained through 
the solution of laminar flow in the respective channels, made under some simplifying assumptions. 
The method used for that purpose was the same as that applied to the solution of the temperature 
fields. 

5. CONCLUSION 

The method presented in the paper enables us to solve a number of boundary problems of heat 
conduction in which a cylindrical region is attached to a longitudinal fin. It can equally well be 
applied to numerous problems of laminar flow in non-circular channels. 
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R&um&L’article traite d’une solution du champ de temp&ature dans des corps cylindriques consistant 
en plusieurs cylindres circulaires creux munis d’ailettes longitudinal@ extdrieures ou inttrieurea ayant la 
forme de secteurs annulaires ou de prismes. Le problkme est analyd avec des conditions aux limites 
variables le long de la p&iphtrie, et pour une distribution arbitraire de sources sur toute l’btendue de la 
section droite. Des probl&mes de ce type sont rencontrb dans des calculs thermiques d’&ments de com- 
bustible de rbacteur nucleaire & ailettes longitudinales ou de tube-s d’tchangeurs de chaleur g ailettes 
longitudinales. L.a mtthode d&velopp& ici peut aussi i%re appliquk aux probl&mes concernant I’&coule- 

ment laminaire dans des conduites non-circulaires. 

4P 
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Zmanmumfassrmt-Die Arbeit behandelt eine Liisung des Temperaturfeldes in zylindrischen Kiirpern, 
die aus verschiedenen Ring&men bestehen und mit Pusseren oder inneren LLngsrippen in Form von 
Ringsektoren oder Prismen versehen sind. Das Problem wird analysiert fiir Randbedingungen, die sich 
tiber den Umfang lndem und fiir beliebige Quellverteilungen iiber den Querschnitt. Probleme dieser Art 
treten auf bei der tbermischen Berechnung liingsberippter Brennstoffelemente von Kemreaktoren oder 
langsberippter Rohre von Wibmeiibertragern. Die hier entwickelte Methode kann such auf Probleme 

der Laminarstromung in nichtkreisfiirmigen Kan&len angewandt werden. 

Artrm~~-B cTaTbe paccrdaTpan,aercn pemertae ~rra TearnepaTyptroro nonrr B ~HJIHH~~H- 
geCKWX TeJIaX, COCTORU&HX KB HeCKOJlbKHX KOJlelJ C BHeUlHWMH HJIH BHyTpeHHWMH npOJJOJlb- 
HbIMW pe6pantu BBH~eCeKTOpOBKOJIb~aHJlK IIPWM. AHanHaHpyeTCKa~a4a~nKI'paKU'1HYX 

~CJIOBU~~, nremmqmcs no ~KPYIKHOCTH n wm KcTO~HKKOB, npomBonbH0 pacnpeaeneHHux 
no ce4eHmo. 3anawi TaKoro Tuna BcTpe9amTcK B TennoTexm~ecKmx pacqeTax TOU~UBH~IX 

WfemeHTOB liJ(epHbIX PeaKTOpOB C npO~OJIbHblMU pe6parn KJIK Tpy6 TenJl006MeHHWKOB C 
npOAOJIbHHM ope6peawena. MeTO& HCnOJlb8OBaHHEd B CTaTbe, MOWHO TaKWe IlpUMeHKTb K 

aaaasard 0 namwHapHoH TeqeHWu B HeKpyFJlblX Tpy6ax. 


